An Industry Friendly Approach for the Preparation of Magnetic and Electro-Conductive Polyaniline Composite Particles
DOI:
https://doi.org/10.3329/jsr.v9i4.32724Keywords:
Conducting polymer, Citric acid, Oxidative polymerization, Magnetic and Electro-conductive nanocomposite.Abstract
Recently nano-sized conducting polymers have gained ample attention because of their unique properties and promising potentiality in nanomaterials and nanodevices. Among the conducting polymers, polyaniline (PANi) is the most studied conducting polymers because of its low monomer cost, ease of preparation, high conductivity in doped form, excellent environmental stability, controllable physical and electrochemical properties by oxidation and protonation. In this investigation magnetic PANi composite particles were prepared following a novel approach by using citric acid for the first time as dopant, surfactant and solubilizing agent. As synthesized citric acid doped Fe3O4 (magnetite)/PANi nanocomposites have been characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffractometer (XRD), Scanning electron microscope (SEM), Thermogravimetry analysis (TGA). Spectroscopic analyses confirmed the modification of Fe3O4 nanoparticles by PANi layer. The Magnetic susceptibility results revealed the paramagnetic behavior of Fe3O4/PANi nanocomposite particles. The electrical conductivities of Fe3O4/PANi nanocomposites increased up to certain amount of Fe3O4 and decreased thereafter.
Downloads
29
29
Downloads
Published
How to Cite
Issue
Section
License
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.