DFT and TD-DFT Study of Only First Diaminomalenonitrile Based Molecular Receptor for Fluoride Anion: Correlation of Calculated and Experimental Results
DOI:
https://doi.org/10.3329/jsr.v13i3.50183Abstract
In this work, the sensing mechanism of a novel anion receptor, 2-amino-((E)-(4-cyanobenzalidine) amino) maleonitrile reported by Sankar et al. (Analyst 138:4760-4763, 2013) was investigated theoretically with the help of density functional theory (DFT) and time-dependent density functional theory (TD-DFT). From the frontier molecular orbital analysis, it is reasonable to support the proposed charge transfer (ICT) enhancement in the receptor molecule in the presence of F−. A significant reduction in the energy gap (ΔE) from 4.014 eV to 2.342eV between highest occupied and lowest unoccupied energy levels was revealed, leading to the strong redshift of its absorption characteristics. Moreover, 1H NMR was also calculated to further understand the mechanistic insights by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G (d,p) basis set. The spectra were simulated, and the chemical shifts linked to TMS were compared with experimental. Besides, Intrinsic Reaction Coordinates (IRC) were also calculated to understand the sensing mechanism.
Downloads
34
40
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.