Joint Modeling for Longitudinal Data with Missing Values: A Bayesian Perspective on Human Intelligence
DOI:
https://doi.org/10.3329/jsr.v13i2.50479Abstract
Joint modeling in longitudinal data is an interesting area of research since it predicts the outcome with covariates that are measured repeatedly over the time. However, there is no proper methodology available in literature to incorporate the joint modeling approach for count-count response data. In addition, there are several situations where longitudinal data might not be possible to collect the complete data and the Missingness may occur due to the absence of the subjects at the follow-up. In this paper, joint modelling for longitudinal count data is adopted using Bayesian Generalized Linear Mixed Model framework to understand the association between the variables. Further, an imputation method is used to handle the missing entries in the data and the efficiency of the methodology has been studied using Markov Chain Monte-Carlo (MCMC) technique. An application to the proposed methodology has been discussed and identified the suitable nutritional supplements in Bayesian perspective without eliminating the missing entries in the dataset.
Downloads
22
38
Downloads
Published
How to Cite
Issue
Section
License
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.