Study of Zero Temperature Ground State Properties of the Repulsive Bose-Einstein Condensate in an Anharmonic Trap
DOI:
https://doi.org/10.3329/jsr.v13i3.50811Abstract
The zero-temperature ground state properties of experimental 87Rb condensate are studied in a harmonic plus quartic trap [ V(r) = ½mω2r2 + λr4 ]. The anharmonic parameter (λ) is slowly tuned from harmonic to anharmonic. For each choice of λ, the many-particle Schrödinger equation is solved using the potential harmonic expansion method and determines the lowest effective many-body potential. We utilize the correlated two-body basis function, which keeps all possible two-body correlations. The use of van der Waals interaction gives realistic pictures. We calculate kinetic energy, trapping potential energy, interaction energy, and total ground state energy of the condensate in this confining potential, modelled experimentally. The motivation of the present study is to investigate the crucial dependency of the properties of an interacting quantum many-body system on λ. The average size of the condensate has also been calculated to observe how the stability of repulsive condensate depends on anharmonicity. In particular, our calculation presents a clear physical picture of the repulsive condensate in an anharmonic trap.
Downloads
22
29
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.