Influence of Cobalt Substitution in LaNiO<sub>3</sub> Nanoperovskite on Catalytic Propylene Oxidation
DOI:
https://doi.org/10.3329/jsr.v13i3.52435Abstract
Perovskite-type oxides with transition elements offer promising potential as catalysts in total oxidation reactions. The present work reports the synthesis of crystalline lanthanum nickelates and cobaltates and their intermediate nanomaterials compositions LaNi1-XCoXO3 (x = 0.3, 0.5, and 0.7) at 800 ºC by co-precipitation precursor technique for structural, morphological, and total propylene oxidation catalytic activity. The evolution of the crystal structure and formation of the perovskite phase were analyzed by X-ray diffraction, Thermo Gravimetry Analysis (TGA) / Differential Scanning Calorimetry (DSC), Fourier Transformed Infra-Red (FTIR), Atomic Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET), Electron Spin Resonance (ESR) techniques. The terminal compounds LaNiO3, LaCoO3, and their intermediates compositions were identified to be single-phase and are indexed to rhombohedral structures. The bonding characteristics were studied by FTIR spectroscopy. On substitution of Ni with Co in B-site, the slight distortion in XRD diffraction peaks were observed. These compounds show a considerable increase in the activity of propylene oxidation to carbon dioxide. This study aims at understanding the effect of B– site substitution in the lattice of LaNiO3 and their influence on catalytic propylene oxidation efficiency.
Downloads
22
41
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.