Effects on Unsteady MHD Flow of a Nanofluid for Free Convection past an Inclined Plate
DOI:
https://doi.org/10.3329/jsr.v14i3.58301Abstract
This paper deals with a similarity solution of unsteady magneto hydrodynamics two-dimensional boundary layer flow of a nanofluid for free convection past an inclined plate. Using similarity transformations, the governing equations are reduced into a set of non-linear ordinary differential equations. The transformed dimensionless equations are then solved numerically using the Nachtsheim-Swigert iteration technique and the order Runga-Kutta method. The effects of buoyancy-ratio parameter, Magnetic parameter, Brownian motion parameter, Thermophoresis parameter, Brownian diffusion parameter, unsteadiness, and other driving parameters on the velocity profile, temperature profile, and concentration profile are represented graphically and discussed in detail. The numerical values of several involved parameters on Skin-friction co-efficient, local Nusselt, and Sherwood numbers are presented in tabular form.
Downloads
27
36
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.