Advancing computer vision frontiers for sustainable precision agriculture

Authors

DOI:

https://doi.org/10.3329/aajbb.v10i3.83439

Keywords:

computer vision, precision agriculture, deep learning, object detection

Abstract

Abstract not available

Asian Australas. J. Biosci. Biotechnol. 2025, 10(3), 50-54

Downloads

Download data is not yet available.
Abstract
135
PDF
43

References

Alex AJ, CM Barnes, P Machado, I Ihianle, G Markó, M Bencsik and JJ Bird, 2025. Enhancing pollinator conservation: monitoring of bees through object recognition. Comput. Electron. Agr., 228: 109665.

Al Riza DF, AM Ikrom, AA Tulsi, Darmanto and Y Hendrawan, 2024. Mandarin orange (Citrus reticulata Blanco cv. Batu 55) ripeness parameters prediction using combined reflectance-fluorescence images and deep convolutional neural network (DCNN) regression model. Sci. Hortic., 331: 113089.

Bjerge K, H Karstoft, HMR Mann and TT Høye, 2024. A deep learning pipeline for time-lapse camera monitoring of insects and their floral environments. Ecol. Inform., 84: 102861.

Calderara-Cea F, M Torres-Torriti, F Auat Cheein and J Delpiano, 2024. A two-stage deep learning strategy for weed identification in grassfields. Comput. Electron. Agr., 225: 109300.

Deng B, Y Lu and Z Li, 2024. Detection, counting, and maturity assessment of blueberries in canopy images using YOLOv8 and YOLOv9. Smart Agr. Technol., 9: 100620.

Hasan ASMM, D Diepeveen, H Laga, MGK Jones, AAM Muzahid and F Sohel, 2025. Morphology-based weed type recognition using Siamese network. Eur. J. Agron., 163: 127439.

Impollonia G, M Croci and S Amaducci, 2024. Upscaling and downscaling approaches for early season rice yield prediction using Sentinel-2 and machine learning for precision nitrogen fertilisation. Comput. Electron. Agr., 227: 109603.

Kalezhi J and L Shumba, 2025. Cassava crop disease prediction and localization using object detection. Crop Prot., 187: 107001.

Khanna S, C Chattopadhyay and S Kundu, 2024. Enhancing fruit and vegetable detection in unconstrained environment with a novel dataset. Sci. Hortic., 338: 113580.

Li Z, D Wang, Q Yan, M Zhao, X Wu and X Liu, 2024. Winter wheat weed detection based on deep learning models. Comput. Electron. Agr., 227: 109448.

Ma C, M Li and P Jiang, 2024. The multiscale response of global cropland cropping intensity to urban expansion. Agric. Syst., 221: 104138.

Martínez Gila DM, D Bonillo Martínez, S Satorres Martínez, P Cano Marchal and J Gámez García, 2024. Non-invasive detection of pesticide residues in freshly harvested olives using hyperspectral imaging technology. Smart Agr. Technol., 9: 100644.

Mathewos Y, B Abate, M Dadi and M Mathewos, 2024. Modeling spatiotemporal land use/land cover dynamics by coupling multilayer perceptron neural network and cellular automata markov chain algorithms in the Wabe river catchment, Omo Gibe River Basin, Ethiopia. Environ. Res. Commun., 6: 105011.

Pham DT, NA Amin, D Yasutake, Y Hirai, T Ozaki, M Koga, K Hidaka, M Kitano, HB Vo and T Okayasu, 2024. Development of plant phenotyping system using Pan Tilt Zoom camera and verification of its validity. Comput. Electron. Agr., 227: 109579.

Qin M, R Li, H Ye, C Nie and Y Zhang, 2024. Study on the extraction of maize phenological stages based on multiple spectral index time-series curves. Agriculture, 14: 2052.

Sadimantara MS, BD Argo, S Sucipto, DF Al Riza and Y Hendrawan, 2023. Detection of aflatoxin-contaminated cocoa beans through YOLO algorithm and fluorescence imaging. Int. J. Agric. Biol., 30: 367-374.

Sadimantara MS, BD Argo, S Sucipto, DF Al Riza and Y Hendrawan, 2024a. The classification of aflatoxin contamination level in cocoa beans using fluorescence imaging and deep learning. J. Robot. Control, 5: 82-91.

Sadimantara MS, BD Argo, S Sucipto, DF Al Riza and Y Hendrawan, 2024b. Prediction of aflatoxin contamination in cocoa beans using UV-fluorescence imaging and artificial neural networks for enhanced detection. J. Glob. Innov. Agric. Sci.. 12: 315-325.

Sharma A, V Kumar and L Longchamps, 2024. Comparative performance of YOLOv8, YOLOv9, YOLOv10, YOLOv11 and Faster R-CNN models for detection of multiple weed species. Smart Agr. Technol., 9: 100648.

Wang D, M Zhao, Z Li, S Xu, X Wu, X Ma and X Liu, 2025. A survey of unmanned aerial vehicles and deep learning in precision agriculture. Eur. J. Agron., 164: 127477.

Wang J, S Zhang, I Lizaga, Y Zhang, X Ge, Z Zhang, W Zhang, Q Huang and Z Hu, 2024. UAS-based remote sensing for agricultural monitoring: current status and perspectives. Comput. Electron. Agr., 227: 109501.

Wang P, S Kim and X Han, 2025. Development of an automatic beehive transporting system based on YOLO and DeepSORT algorithms. Comput. Electron. Agr., 229: 109749.

Wang X, J Zhou, Y Xu, C Cui, Z Liu and J Chen, 2024. Location of safflower filaments picking points in complex environment based on improved Yolov5 algorithm. Comput. Electron. Agr., 227: 109463.

Zhang P, S Zhang, J Wang and X Sun, 2024. Identifying rice lodging based on semantic segmentation architecture optimization with UAV remote sensing imaging. Comput. Electron. Agr., 227: 109570.

Zhang S, K Hu, W Sha, Q Chen, Z Hou and S Weng, 2025. Efficient one-stage location method for grape picking points in natural scene by combining detection network and point regression. Comput. Electron. Agr., 230: 109725.

Zhan C, H Mao, R Fan, T He, R Qing, W Zhang, Y Lin, K Li, L Wang, T Xia, Y Wu and Z Kang, 2024. Detection of apple sucrose concentration based on fluorescence hyperspectral image system and machine learning. Foods, 13: e3547.

Zoubek T, R Bumbálek, J de Dieu Marcel Ufitikirezi, M Strob, M Filip, F Špalek, A Heřmánek and P Bartoš, 2025. Advancing precision agriculture with computer vision: a comparative study of YOLO models for weed and crop recognition. Crop Prot., 190: 107076.

Downloads

Published

2025-09-02

How to Cite

Hendrawan, Y. (2025). Advancing computer vision frontiers for sustainable precision agriculture. Asian-Australasian Journal of Bioscience and Biotechnology, 10(3), 50–54. https://doi.org/10.3329/aajbb.v10i3.83439

Issue

Section

Editorial