Effect of thermal buoyancy on flow pattern from a pair of side-by-side confined triangular cylinders
DOI:
https://doi.org/10.3329/bjsir.v55i1.46727Keywords:
Axial buoyancy effect; Radial buoyancy effect; Two triangular cylinders; Heat transfer; Drag coefficientAbstract
The effects of ax ial and radial thermal buoyancy on fluid flow and mixed convection heat transfer from a pair of identical triangular cylinders in side-by-side arrangement confined within a straight channel. The numerical simulations are carried out by solving continuity, momentum and energy equations using the commercial code ANSYS-CFX. The obtained results are presented and discussed within the range of following conditions: Richardson number Ri = 0 to 2, Reynolds Re = 20, and Prandtl number Pr = 1 at fixed value of blockage ratio β = 0.2. The main results are depicted in terms of streamline and isotherm contours to analyze the fluidic and energetic behaviors. The total drag coefficient and average Nusselt number are also computed. Moreover, a simple correlation indicating the variations of drag coefficient and average Nusselt number versus Richardson number are also provided. It was found that for axial effect of thermal buoyancy, increase in buoyancy strength enhances the heat transfer rate for both cylinders. In other hand, for radial effect, increase in buoyancy strength increases the heat transfer rate of down cylinder and it is reduced for the upper cylinder.
Bangladesh J. Sci. Ind. Res.55(1), 9-14, 2020
Downloads
31
44
Downloads
Published
How to Cite
Issue
Section
License
Bangladesh Council of Scientific and Industrial Research (BCSIR) holds the copyright to all contents published in Bangladesh Journal of Scientific and Industrial Research (BJSIR). A copyright transfer form should be signed by the author(s) and be returned to BJSIR.
The entire contents of the BJSIR are protected under Bangladesh Council of Scientific and Industrial Research (BCSIR) copyrights.
BJSIR is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC) Creative Commons Attribution-NonCommercial 4.0 International License which allows others remix, tweak, and build upon the articles non-commercially, and although their new works must also acknowledge and be non-commercial, they dont have to license their derivative works on the same terms.