Multivariate analysis of morphological descriptors for identification of Sesbania Scop. accessions
DOI:
https://doi.org/10.3329/bjsir.v55i3.49395Keywords:
Sesbania Scop.; Numerical data; Agglomerative hierarchical clustering; Principal component analysis; Dissimilarities distanceAbstract
Based on the 36 quantitative morphological descriptors, agglomerative hierarchical clustering (AHC) and principal component analyses (PCA) were conducted to identify 106 diverse Sesbania accessions. The AHC analysis identified three major clusters with 11 sub-clusters. In PCA, the first and second PCs explain 72.48% and 12.72% of total variations with high Eigen value 9.1 and 1.7, respectively. Sesbania accessions occupied four distinct positions in the PCA graph. Based on multivariate analyses and qualitative descriptors, Sesbania accessions have been identified as S. bispinosa (90 accessions), S. cannabina (9 accessions), S. sesban (6 accessions) and the known S. rostrata. The AHC dendrogram has detected the close similarities between S. rostrata and S. cannabina. However, the PCA has emerged to be better than the AHC as a species identification tool. Among these four species, the highest discriminating distance (23.69%) was observed between S. sesban and S. bispinosa, and the lowest (10.52%) was in S. bispinosa and S. cannabina.
Bangladesh J. Sci. Ind. Res.55(3), 215-220, 2020
Downloads
27
29
Downloads
Published
How to Cite
Issue
Section
License
Bangladesh Council of Scientific and Industrial Research (BCSIR) holds the copyright to all contents published in Bangladesh Journal of Scientific and Industrial Research (BJSIR). A copyright transfer form should be signed by the author(s) and be returned to BJSIR.
The entire contents of the BJSIR are protected under Bangladesh Council of Scientific and Industrial Research (BCSIR) copyrights.
BJSIR is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC) Creative Commons Attribution-NonCommercial 4.0 International License which allows others remix, tweak, and build upon the articles non-commercially, and although their new works must also acknowledge and be non-commercial, they dont have to license their derivative works on the same terms.