Synthesis of Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>2</sub>O<sub>3</sub> nanoparticles using hybrid electrochemical-thermal method
DOI:
https://doi.org/10.3329/bjsir.v55i3.49396Keywords:
Nanocrystalline Fe3O4 and Fe2O3; Hybrid electrochemical-thermal methodAbstract
Nanocrystalline Fe3O4 and Fe2O3 particles were successfully synthesized by an innovative hybrid electrochemical-thermal method. The as-prepared compound was calcined for an hour from 100 to 600oC temperatures. The crystallinity, morphology and chemical state of the synthesized powders were characterized by XRD, TG-DTA, SEM/EDS, FT-IR, and UV–Vis spectral techniques after calcinations. The Brunauer–Emmett–Teller (BET) plots confirmed that iron oxide nanoparticles (NPs) calcined at 400oC has a surface area of 18.28 m2 g-1 with a total pore volume of 0.2064 cc g-1. From XRD pattern it is revealed that the precursor calcined at lower temperature (100-400oC) correspond to Fe3O4,while the ones calcined at higher temperature follow Fe2O3 pattern. The morphology of iron oxide NPs calcined at different temperatures were studied with scanning electron microscope (SEM) and exhibits spherical shaped geometries with average diameters of 80-150nm.
Bangladesh J. Sci. Ind. Res.55(3), 221-228, 2020
Downloads
31
40
Downloads
Published
How to Cite
Issue
Section
License
Bangladesh Council of Scientific and Industrial Research (BCSIR) holds the copyright to all contents published in Bangladesh Journal of Scientific and Industrial Research (BJSIR). A copyright transfer form should be signed by the author(s) and be returned to BJSIR.
The entire contents of the BJSIR are protected under Bangladesh Council of Scientific and Industrial Research (BCSIR) copyrights.
BJSIR is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC) Creative Commons Attribution-NonCommercial 4.0 International License which allows others remix, tweak, and build upon the articles non-commercially, and although their new works must also acknowledge and be non-commercial, they dont have to license their derivative works on the same terms.