IR spectra of paracetamol
DOI:
https://doi.org/10.3329/bjsir.v56i4.57197Keywords:
Pharmaceuticals; Ab initio calculation; Molecular crystals; Hydrogen bond; Intermolecular interaction.Abstract
Paracetamol is a very popular medication used to treat pain and fever. IR spectra of paracetamol have been measured for powder crystals. Ab initio calculations of its equilibrium geometry and vibrational spectra were carried out for spectrum interpretation. Differences between the experimental IR spectra of crystalline samples have been analyzed. Variations of molecular structure from the isolated state to molecular crystal were estimated based on the difference between the optimized molecular parameters of free molecules and the experimental bond lengths and angles evaluated for the crystal forms of the title compounds. The role of hydrogen bonds in the structure of molecular crystals of paracetamol is investigated.
Bangladesh J. Sci. Ind. Res.56(4), 255-262, 2021
Downloads
161
827
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bangladesh Council of Scientific and Industrial Research
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Bangladesh Council of Scientific and Industrial Research (BCSIR) holds the copyright to all contents published in Bangladesh Journal of Scientific and Industrial Research (BJSIR). A copyright transfer form should be signed by the author(s) and be returned to BJSIR.
The entire contents of the BJSIR are protected under Bangladesh Council of Scientific and Industrial Research (BCSIR) copyrights.
BJSIR is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC) Creative Commons Attribution-NonCommercial 4.0 International License which allows others remix, tweak, and build upon the articles non-commercially, and although their new works must also acknowledge and be non-commercial, they dont have to license their derivative works on the same terms.