Effect of Multiple Orders on Superconducting Transition Temperature of Hole Doped Cuprates
DOI:
https://doi.org/10.3329/jsr.v9i4.32598Keywords:
Superconductivity, Cuprates, Multiple orders, Electronic density of states.Abstract
Hole doped high-Tc cuprate superconductors are strongly correlated electronic systems. In these materials, various electronic orders are often found, but whether they support or compete with superconducting order is not unambiguous. Superconductivity normally manifests itself by a superconducting gap in the electronic density of states (EDOS). In cuprates, a gap appears even in the normal state called the pseudogap (PG). For certain doping range, spin density wave and charge density wave coexist with superconductivity by inducing corresponding additional gaps in the EDOS. In this study, we have tried to obtain expression for superconducting transition temperature, Tc by solving the BCS (Bardeen-Cooper-Schrieffer) energy gap equation in the presence of depleted EDOS of various origins and types. We have been successful to solve the weak-coupling BCS integral equation analytically in some special cases and also in the general case by using numerical integration. We have found that depending on conditions these non-pairing gaps/orders can enhance as well as reduce Tc.
Downloads
27
38
Downloads
Published
How to Cite
Issue
Section
License
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.