Shannon Information Entropy Sum of a Free Particle in Three Dimensions Using Cubical and Spherical Symmetry
DOI:
https://doi.org/10.3329/jsr.v15i1.60067Abstract
In this paper, the plane wave solutions of a free particle in three dimensions for Cubical and Spherical Symmetry have been considered. The coordinate space wave functions for the Cubical and Spherical Symmetry are obtained by solving the Schrdinger differential equation. The momentum space wave function is obtained by using the operator form of an observable in the case of Cubical Symmetry. For Spherical Symmetry, the same is obtained by taking the Fourier transform of the respective coordinate space wave function. The wave functions have been used to constitute probability densities in coordinate and momentum space for both the symmetries. Further, the Shannon information entropy has been computed both in coordinate and momentum space respectively for (L is the length of the side of the cubical box) values for Cubical Symmetry and for values in Spherical Symmetry keeping (k is the wave vector and p is the momentum of the free particle) constant. The values obtained for the Shannon information entropies are found to satisfy the Bialynicki-Birula and Myceilski (BBM) inequality at larger values () in case of Cubical Symmetry and for values of and in Spherical Symmetry.
Downloads
32
41
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.