Effect of aneurysmatic artery on blood flow having permeability in human organ
DOI:
https://doi.org/10.3329/jname.v18i2.53624Keywords:
Anuerysmatic artery; Oldroyd-B model; Finite element methd; Permeability; ViscoelasticityAbstract
Blood flow in a double aneurysmatic artery of the normal tissue is studied. A Finite Element method is used to analyze numerical simulation of blood flow through aneurysmatic arteries. The Newtonian, generalized Newtonian, Oldroyd-B and generalized Oldroyd-B models are considered due to the behavior of blood viscosity. In this paper, the effect of aneurysmatic artery on blood flow with permeability in human organ has been investigated. The non-Newtonian models have been applied to study the blood velocity, pressure, and wall shear stress in an aneurysmatic artery. A set of partial differential equations are transformed into dimensionless equations using non-dimensional variables and solved numerically. We have focused our consideration on the simulation of blood velocity and pressure in terms of blood flow rate for various Weissenberg numbers (Wi) and Peclet numbers (Pe). The important effects on blood flow of aneursymatic artery for blood velocity, pressure and wall stress profiles are presented graphically for Newtonian and non-Newtonian models.
Downloads
69
45
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Journal of Naval Architecture and Marine Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please download the Copyright Transfer Agreement and send it after duly filled in.
Link to FaceBook